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Abstract: The aim of this study was to measure the effects on three-planar active cervical range
of motion (ACROM) and self-perceived pain of elastic taping (ET) application in the cervical area.
Thirty participants (n: 22-M and 8-F, age 35.4 ± 4.4 years; body height 173.1 ± 8.4 cm; body mass
73.5 ± 12.8 kg) in the study group (SG) and twenty participants (n: 11-M and 9-F, age 32.6 ± 3.9 years;
body height 174.9 ± 10.9 cm; body mass 71.2 ± 12.9 kg) in the control group (CG) were recruited. All
subjects had neck and cervical pain in baseline condition. Each group performed an ACROM test and
measured the perceived pain in the neck based on the Numerical Rating Scale (NRS 0–10, a.u.) at the
baseline (T0), after 20′ from the ET application (T1), and after three days of wearing the ET application
(T2). Between T0 and T1, an ET was applied to the cervical area of the SG participants. Statistical
analysis did not show any significant change in CG in any measurement session for ACROM and
neck pain parameters. Conversely, the SG showed significant improvements for ACROM rotation to
the left (T0 64.8 ± 7.7◦–T2 76.0 ± 11.1◦ p < 0.000) and right (T0 66.0 ± 11.9◦–T2 74.2 ± 9.6◦ p < 0.000),
lateral inclination to the left (T0 37.5 ± 6.9◦–T2 40.6 ± 10.8◦ p < 0.000) and right (T0 36.5 ± 7.9◦–T2
40.9± 5.2◦ p < 0.000), extension (T0 47.0± 12.9◦–T2 55.1± 12.3◦ p < 0.001), and flexion (T0 55.0± 3.6◦–T2
62.9 ± 12.0◦ p < 0.006). A significant decrease was also measured in SG for pain NRS between T0 and
T2 (T0 7.5 ± 1.0◦–T1 5.5 ± 1.4–T2 1.4 ± 1.5◦ p < 0.000). In conclusion, a bilateral and symmetrical ET
cervical application is useful to enhance multiplanar ACROM and reduce subjective self-perceived
cervical pain when it is needed. Based on the evidence, the use of ET on the neck is recommended for
managing neck motion restrictions and pain in adult individuals.

Keywords: cervical ROM; elastic taping; neck pain; kinesiology; musculoskeletal health

1. Introduction

The cervical spine, consisting of seven vertebrae, is known for its exceptional mobility
within the spinal column. It plays a crucial role in facilitating multiplanar movements of
the head in space. Specifically, the motion of the cervical spine and head complex can be
categorized into right–left rotation, right–left lateral inclination, flexion, and extension,
meaning forward and backward head motion, respectively [1]. These movements can be
performed individually on a single anatomical plane or via combined multiplanar actions,
depending on the functional demands of the environment.
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Given these unique characteristics, preserving or restoring the physiological active
range of motion (ACROM) of the cervical spine becomes a significant challenge in daily
life, particularly in sports and various activities, as it contributes to maintaining optimal
health [2,3]. Numerous factors can impede and restrict the ACROM, including traumatic
injuries, repetitive movements, occupational practices, prolonged postures, head position-
ing, and other factors [4–8]. Diminished ACROM can have various detrimental effects on
the musculoskeletal system, affecting the use of the eyes, other spinal segments, shoulder
mobility, etc. Additionally, a reduced ACROM is a common observation among individuals
experiencing neck pain [9–13]. In light of this context, two primary considerations arise:
(1) the need for a comprehensive evaluation of the ACROM and (2) the implementation of
effective strategies to enhance it.

Regarding the ACROM assessment, professionals have the option to conduct tests
with or without devices [14]. Qualitative analyses without devices are cost effective and
straightforward, but there is no change to compare data over time [15]. Within the realm
of instrument-based evaluation, various solutions exist, including video analysis and 3D
motion capture systems. However, these methods are more suited to analyzing posture
and complex movements in specific contexts [16–18]. As a result, the most utilized and
practical approach involves the use of inertial sensors [3,19–22].

These tools enable professionals to accurately measure the ACROM in a convenient
and efficient manner, without causing discomfort to the subjects. Typically, an inertial
sensor is positioned on the subject’s forehead and moves in conjunction with the head,
capturing angles and the range of motion during neck active movements [19–22], avoiding
any compensative movement of the shoulder girdle.

Regarding strategies for preserving and improving ACROM, multiple approaches can
be considered, such as reducing screen time, minimizing sedentary behavior, receiving
massages, engaging in targeted exercises, utilizing cupping techniques, and employing
elastic taping [23–27]. Among these solutions, elastic taping (ET) possesses a distinctive
characteristic: it can be worn directly on the skin for an extended period, continuously
working 24 h a day and adapting to the subject’s movements until its removal. This
unique characteristic makes ET a valuable and practical tool not only for sportspeople and
athletes [28,29] but also for individuals in their daily lives.

Based on the current knowledge, the effectiveness of ET applications in reducing neck
pain and improving the ACROM has been demonstrated [30–32]. However, there is a lack
of data on the immediate and short-term effects of a single bilateral and symmetrical ET
application worn for three days by video terminal workers experiencing neck pain and
restricted ACROM. The hypothesis of this research is that wearing the same ET application
for three days can have beneficial effects on cervical pain and ACROM outcomes in video
terminal workers. Therefore, the objective of this research was to assess the immediate and
short-term impacts of a single bilateral and symmetrical ET application on self-perceived
pain and multiplanar motion of the cervical spine.

2. Materials and Methods
2.1. Design and Participants

This study utilized a short-term longitudinal small-cohort design with repeated mea-
sures. The participants were recruited from employees of a call center located in the south
of Italy. Voluntary participation was sought, and specific selection criteria were applied,
including (1) individuals experiencing recurrent self-perceived musculoskeletal cervical
pain (recurrence more than 1 episode per year), (2) individuals receiving no treatments for
cervical pain before or during the research period, and (3) individuals working as video
terminal operators.

A total of 60 participants were recruited and randomly assigned to either the study
group (SG) or the control group (CG), ensuring a balanced distribution. However, 10 par-
ticipants dropped out during the course of this study, resulting in a final sample size of
50 participants completing the experiment (Figure 1). The SG comprised 30 participants
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(n: 22-M, age 35.6 ± 4.4 years; body height 176.6 ± 6.6 cm; body mass 79.3 ± 9.1 kg and
8-F, age 34.8 ± 4.5 years; body height 163.5 ± 4.3 cm; body mass 57.6 ± 6.0 kg). The
CG included 20 participants (n: 11-M, age 32.8 ± 3.6 years; body height 182.3 ± 7.5 cm;
body mass 79.0 ± 9.2 kg and 9-F, 32.2 ± 4.5 years; body height 165.9 ± 6.8 cm; body
mass 61.7 ± 10.4 kg). A power analysis was performed, indicating that sample sizes of
20 and 30 subjects per group, respectively, would provide 80% power, with a 5% error
probability and an effect size of 0.55. Prior to the intervention phase, all participants were
thoroughly informed of this study’s purpose and provided voluntary consent. Privacy
criteria were also strictly upheld. This study received approval from the Ovidius University
of Constanta, Number 78, on 27 January 2023, in accordance with the principles outlined in
the Helsinki Declaration.
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Figure 1. Participants’ distribution into groups. In particular, for CG, (1) three participants lost
immediately after T0 expressed discomfort when performing the ACROM test and were afraid that it
might cause more pain. As a result, they chose to withdraw from this study. (2) Seven subjects were
lost between T1 and T2 because they opted to undergo some form of treatment, and, therefore, they
were excluded from this analysis.

2.2. Instrumentation

The assessment of multiplanar ACROM was conducted using an inertial sensor
(Moover®, Sensor Medica, Guidonia-RM, Italy) positioned in the middle of the forehead
and secured with an elastic band (Figure 2).
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Figure 2. Placement of the inertial sensor on the forehead for measuring of the multiplanar ACROM.

To ensure the accuracy and validity of the inertial sensor, a preliminary comparison
was made using a six three-dimensional camera optoelectronic system (SMART DX, BTS
Bioengineering, Garbagnate Milanese, Italy), which served as the gold standard. A con-
venience sample of nineteen subjects participated in this trial, performing ACROM tests
using the inertial sensor with a passive reflective marker attached to it. The data obtained
from the Moover® sensor did not show any statistically significant differences compared to
the 3D kinematic data. Further details can be found in Appendix A.

Self-perceived cervical pain was evaluated using the Numerical Rating Scale (NRS,
0–10), with 0 representing the absence of pain and 10 indicating the highest level of sustain-
able pain.

For the ET application, two personalized strips of Taping Elastico® (ATS, Arezzo,
Italy) were used for each subject in the SG. The application procedures are described in the
next section.

2.3. Procedure and Data Collection

The testing procedures were conducted in a dedicated room within the participants’
working place, maintaining a mean temperature of 19 ◦C and a mean relative humidity
of 52%. To minimize the potential influence of circadian effects, each subject underwent
testing at the same time of day, as is customary in laboratory procedures of this nature [33].
This study consisted of three test sessions (T0–T1–T2), with a preliminary familiarization
session conducted one week prior to the start of the protocol to provide instructions to the
participants. T0 served as the baseline assessment, T1 served as the acute assessment taken
20 min after the application of the ET on the cervical area, and T2 served as the short-term
assessment conducted after three days of wearing the ET application (Figure 3). T0 and T1
assessments were performed on the same day. Both SG and CG underwent the three test
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sessions in the same order. The CG received no intervention between T0 and T1, as well as
between T1 and T2.
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Figure 3. Graphical description of procedures and this study’s timeline.

Each test session (T0–T1–T2) consisted of two evaluations performed in the following
sequence: (1) the assessment of perceived cervical pain using a 0–10 Numerical Rating
Scale (NRS) and (2) the measurement of ACROM using an inertial sensor.

The NRS was printed on white paper, and each subject marked an “X” on the score
corresponding to their self-perceived pain in the cervical area.

The assessment of multiplanar ACROM involved measuring angular motions in three
directions: right–left rotation on the transversal plane, right–left lateral inclination on the
frontal plane, and flexion–extension on the sagittal plane (Figure 4). Each test included a
total of 14 movements, with 7 repetitions performed for each direction. The maximum and
minimum values were excluded, and the average value was calculated. During the tests,
each subject was seated to stabilize the hips and the lumbar spine, while the entire trunk
was leaned against a wall at shoulder height. Two flaps were placed on top of the wall to
restrict shoulder motion. The tests were considered valid if the subject did not move the
shoulders or trunk away from the wall. Only the cervical spine with the head were allowed
to move. In case of an error, the test was repeated. The described procedure was also used
in a previous study [11].
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Figure 4. ACROM directions and anatomical planes tested using the inertial sensor: (A) right–left
rotation on the transversal plane; (B) right–left lateral inclination on the frontal plane; (C) flexion–
extension on the sagittal plane.

The ET application was administered by a skilled operator immediately after T0.
The same operator (T.P.) applied the ET for all subjects in the study group (SG). The ET
application followed the Taping Elastico® Method (ATS, Arezzo, Italy) and was applied
symmetrically to both sides of the cervical area [34]. A strip of tape was cut into a “Y”
shape, with the anchor applied to the skin at the level of the acromion and the two tails
directed towards the base of the head. One tail followed the upper trapezius direction
on the lateral portion of the neck, while the other was applied to the posterior portion
(Figure 5). During the application, participants inclined their heads to the opposite side,
stretching the skin. The ET was applied with zero tension, aiming to create convolutions
when the head was in a neutral position. The ET application was bilateral and symmetrical.
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Figure 5. ET application following the Taping Elastico® Method. It was possible to distinguish
the convolutions of the two tails, typical of a zero-tension application with the aim of reducing
compression of the underlying tissues.

After the ET application, participants in the SG waited for 20 min while wearing the
application before proceeding to the next test session (T1), which was in line with previous
study [29] and the manufacturer’s guidelines. The control group (CG) was observed at the
same time between T0 and T1 without any intervention. Participants in the SG continued to
wear the ET for three days during their daily activities. They were instructed to be cautious
during dressing and washing to minimize the possibility of dislodging the ET. No instances
of detachment were reported until T2. On the third day, one hour prior to the final test
session (T2), the operator removed the ET.

2.4. Statistical Analysis

The normality of the data was assessed using the Shapiro–Wilk test. As the data
followed a normal distribution, parametric tests were employed for the analysis. Differences
at baseline were tested with a t-test for independent samples. A mixed ANOVA design
(Time × Group) for repeated measures with Bonferroni correction was used to compare the
post hoc effects (comparisons between T0 and T1, T1 and T2, and T0 and T2). Effect sizes
(partial eta squared, η2

p) were also calculated to facilitate the interpretation of the results,
with values of 0.01, 0.06, and above 0.15 indicating small, medium, and large effect sizes,
respectively [35,36]. The significance level was set at p = 0.05, and the statistical analysis
was performed using SPSS (SPSS Inc., Chicago, IL, USA).
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3. Results

The statistical analysis revealed no significant differences between SG and CG at T0
for any of the parameters measured. A Time × Group significant interaction was measured
for all the ACROM directions, as well as for self-perceived pain, indicating that the changes
in ROM and pain over time are not the same across the two groups (Table 1).

Table 1. Results of the mixed ANOVA Time × Group interaction.

Parameter F p Value

ACROM right rotation (◦) 3.764 0.027
ACROM left rotation (◦) 8.034 0.001

ACROM right lateral inclination (◦) 10.400 0.000
ACROM left lateral inclination (◦) 7.537 0.001

ACROM extension (◦) 7.435 0.001
ACROM flexion (◦) 5.708 0.005

Pain (A.U.) 113.111 0.000
Note: ACROM—active cervical range of motion.

The CG did not exhibit any significant differences in any parameter at any time point.
However, the SG demonstrated a significant increase in all ACROM values at T2 compared
to T0 (Table 2). Additionally, self-perceived pain in the cervical area was significantly lower
at T2 compared to T0. Significant differences were also observed between T0 and T1, as
well as between T1 and T2. Table 2 provides a detailed overview of the results.

Table 2. Results of the experiment for SG and CG.

Parameter T0 T1 T2 η2
p p Value

St
ud

y
G

ro
up

(S
G

) ACROM right rotation (◦) 66.0 ± 11.9 68.4 ± 9.3 74.2 ± 9.6 #§ 0.432 0.000
ACROM left rotation (◦) 64.8 ± 7.7 70.4 ± 12.5 * 76.0 ± 11.1 #§ 0.599 0.000

ACROM right lateral inclination (◦) 36.5 ± 7.9 38.0 ± 7.9 40.9 ± 5.2 #§ 0.452 0.000
ACROM left lateral inclination (◦) 37.5 ± 6.9 40.6 ± 10.8 43.2 ± 8.0 #§ 0.554 0.000

ACROM extension (◦) 47.0 ± 12.9 49.6 ± 11.3 55.1 ± 11.3 #§ 0.360 0.000
ACROM flexion (◦) 55.0 ± 3.6 61.7 ± 12.8 * 62.9 ± 12.0 # 0.288 0.002

Pain (A.U.) 7.5 ± 1.0 5.5 ± 1.4 * 1.4 ± 1.5 #§ 0.945 0.000

C
on

tr
ol

G
ro

up
(C

G
) ACROM right rotation (◦) 62.5 ± 9.1 63.8 ± 9.3 63.0 ± 8.7 0.017 0.569

ACROM left rotation (◦) 58.8 ± 7.0 60.9 ± 9.2 58.4 ± 7.5 0.012 0.630
ACROM right lateral inclination (◦) 36.0 ± 7.0 36.0 ± 6.7 34.1 ± 4.2 0.094 0.175
ACROM left lateral inclination (◦) 37.1 ± 7.1 36.4 ± 6.0 35.2 ± 6.6 0.009 0.675

ACROM extension (◦) 50.9 ± 11.6 52.9 ± 10.7 49.3 ± 10.8 0.049 0.337
ACROM flexion (◦) 56.5 ± 15.2 53.4 ± 14.1 54.3 ± 12.5 0.081 0.211

Pain (a.u.) 6.9 ± 1.1 6.5 ± 1.7 7.1 ± 0.9 0.056 0.438

Note: ACROM—active cervical range of motion. T0—baseline test session. T1—test session after 20′ of wearing
ET application. T2—test session after three days of wearing ET application. “*”—significant difference between
T0 and T1. “#”—significant difference between T0 and T2. “§”—significant difference between T1 and T2.

The ET application resulted in increased ACROM in all directions after three days
of wearing. However, significant increases were specifically observed in left rotation and
flexion, even after just 20 min of wearing. Additionally, when comparing the measure-
ments taken at T1 and T2, all ACROM directions, except for the extension phase, showed
significant increases (Figure 6).

Furthermore, the self-perceived cervical pain exhibited a significant decrease after both
20 min and three days of wearing the ET application. Notably, there was also a significant
difference in pain levels between T1 and T2 (Figure 7).
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Each group was analyzed by dividing them by gender, with the aim of understand-
ing if the results of the entire sample could be influenced by gender differences. The
behavior of male and female participants in both SG and CG was consistent with the
behavior of the whole sample. SG showed significant differences between T0, T1, and
T2 in both male and female individuals, while CG did not show any differences in any
gender. Due to the paucity of female subjects in SG, the standard deviation was high,
which affected the post hoc comparisons. Nevertheless, the ANOVA showed significant
changes over time. Tables 3 and 4 summarize the statistical analyses for male and female
individuals, respectively.

Table 3. Results of the experiment for male participants in SG and CG.

Parameter T0 T1 T2 η2
p p Value

St
ud

y
G

ro
up

(S
G

) ACROM right rotation (◦) 65.9 ± 11.0 68.2 ± 7.6 74.3 ± 7.4 #§ 0.415 0.000
ACROM left rotation (◦) 64.7 ± 8.1 70.6 ± 9.9 * 75.9 ± 7.9 #§ 0.680 0.001

ACROM right lateral inclination (◦) 35.9 ± 7.4 37.5 ± 7.4 40.7 ± 4.9 #§ 0.536 0.000
ACROM left lateral inclination (◦) 36.0 ± 6.0 38.9 ± 7.6 42.5 ± 6.9 #§ 0.626 0.000

ACROM extension (◦) 47.3 ± 13.1 51.7 ± 8.0 55.1 ± 9.4 # 0.327 0.004
ACROM flexion (◦) 55.6 ± 10.8 62.5 ± 11.3 * 63.2 ± 10.6 0.241 0.017

Pain (A.U.) 7.5 ± 1.1 5.8 ± 1.3 * 1.5 ± 1.6 #§ 0.938 0.000

C
on

tr
ol

G
ro

up
(C

G
) ACROM right rotation (◦) 64.3 ± 9.0 64.4 ± 6.9 64.4 ± 6.7 0.002 0.892

ACROM left rotation (◦) 58.9 ± 7.2 62.7 ± 8.5 59.0 ± 6.9 0.000 0.948
ACROM right lateral inclination (◦) 38.2 ± 7.1 38.1 ± 5.7 35.6 ± 3.1 0.279 0.077
ACROM left lateral inclination (◦) 38.4 ± 7.4 38.5 ± 5.5 36.8 ± 6.9 0.141 0.229

ACROM extension (◦) 47.6 ± 13.6 50.0 ± 12.3 45.1 ± 11.2 0.079 0.376
ACROM flexion (◦) 57.8 ± 13.9 53.5 ± 13.0 56.0 ± 10.4 0.034 0.568

Pain (a.u.) 4.3 ± 3.5 3.8 ± 3.3 4.6 ± 3.7 0.364 0.058

Note: ACROM—active cervical range of motion. T0—baseline test session. T1—test session after 20′ of wearing
ET application. T2—test session after three days of wearing ET application. “*”—significant difference between
T0 and T1. “#”—significant difference between T0 and T2. “§”—significant difference between T1 and T2.

Table 4. Results of the experiment for female participants in SG and CG.

Parameter T0 T1 T2 η2
p p Value

St
ud

y
G

ro
up

(S
G

) ACROM right rotation (◦) 66.5 ± 15.2 69.0 ± 13.6 73.7 ± 14.9 0.523 0.028
ACROM left rotation (◦) 65.1 ± 6.7 69.9 ± 18.8 76.3 ± 18.0 0.451 0.047

ACROM right lateral inclination (◦) 38.1 ± 9.5 39.4 ± 9.3 41.4 ± 6.3 0.256 0.165
ACROM left lateral inclination (◦) 41.6 ± 8.0 45.1 ± 16.7 45.3 ± 10.8 0.355 0.091

ACROM extension (◦) 46.2 ± 13.0 43.8 ± 16.8 55.1 ± 16.3 § 0.466 0.043
ACROM flexion (◦) 53.2± 12.2 59.5 ± 16.9 62.2 ± 16.2 0.484 0.037

Pain (A.U.) 7.3 ± 0.7 4.8 ± 1.4 * 1.1 ± 1.5 #§ 0.965 0.000

C
on

tr
ol

G
ro

up
(C

G
) ACROM right rotation (◦) 60.4 ± 10.4 63.1 ± 12.0 61.1 ± 10.9 0.072 0.453

ACROM left rotation (◦) 58.7 ± 7.2 58.7 ± 10.0 57.7 ± 8.4 0.078 0.434
ACROM right lateral inclination (◦) 33.4 ± 6.2 33.3 ± 7.1 32.3 ± 4.9 0.129 0.308
ACROM left lateral inclination (◦) 35.5 ± 6.9 33.9 ± 5.9 33.2 ± 6.0 0.318 0.090

ACROM extension (◦) 54.8 ± 7.5 56.3 ± 7.7 54.4 ± 8.3 0.011 0.770
ACROM flexion (◦) 55.0 ± 17.3 53.3 ± 16.3 51.9 ± 15.0 0.185 0.215

Pain (a.u.) 4.0 ± 3.9 4.1 ± 3.9 3.9 ± 3.5 0.053 0.594

Note: ACROM—active cervical range of motion. T0—baseline test session. T1—test session after 20′ of wearing
ET application. T2—test session after three days of wearing ET application. “*”—significant difference between
T0 and T1. “#”—significant difference between T0 and T2. “§”—significant difference between T1 and T2.

4. Discussion

The primary objective of this study was to evaluate the immediate and short-term
impacts of the application of an ET to the cervical area on self-perceived pain and the
multiplanar motion of the cervical spine. The main novelty of this investigation lies in
examining the short-term effects of a bilateral and symmetrical ET application on ACROM.
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This kind of approach can be considered a novelty because previous research did not
use symmetrical applications. Additionally, investigating the effects of ET on pain is of
great interest to healthcare professionals, given the chronic nature of cervical pain and its
substantial societal costs [37–39]. In fact, cervical pain is recognized as one of the leading
causes of global disability, placing it among the top five contributors [40].

Previous research conducted by Erdoğanoğlu et al. [30] with a similar study design
demonstrated that wearing an ET application for 24 h resulted in a significant reduction
in neck pain and improved ACROM. However, it is important to note that this previous
study only included symptomatic individuals with cervical pain and lacked a control
group; moreover, the observed effects were limited to a 24-h timeframe. In contrast, the
present study also included symptomatic individuals but incorporated a control group
and extended the measurement period by two days using a single ET application. This
represents a significant advancement in the scientific evidence supporting the applica-
tion of ET because it should be considered that the proposed methodology used in the
current study is more similar to the everyday use of ET by individuals. Another study
by Alahmari et al. [31] investigated the effects of ET application for more than three days,
extending the period up to seven days, but it employed a different application technique
and did not measure ACROM. Additionally, Ay et al. [32] demonstrated the effectiveness of
five ET applications over a two-week period in terms of reducing neck pain and improving
ACROM. While their study employed a similar ET application method to that used in our
research, the ET shape, location, and unilateral application differed.

The findings of the present study align with previous literature (although different
ET applications were used), supporting the immediate effects of ET on perceived pain and
ACROM. Particularly noteworthy was the significant reduction in perceived pain after
20 min of ET application in the SG (7.5 ± 1.0 and 5.5 ± 1.4 at T0 and T1, respectively;
p < 0.000). Moreover, in the same time span, there was a significant increase in ACROM
for left rotation (64.8 ± 7.7◦ and 70.4 ± 12.5◦ at T0 and T1, respectively, p = 0.041) and
flexion (55.0 ± 3.6◦ and 61.7 ± 12.8◦ at T0 and T1, respectively, p = 0.007). These immediate
improvements in flexion and pain reduction confirm the positive effects of ET application.
It is well recognized that individuals with cervical pain and disorders often experience
limitations in flexion, making these findings particularly relevant [9–13].

From a practical and professional standpoint, the most notable finding of this study is
undeniably the short-term effect observed after three days of using a single bilateral ET
application. It is widely acknowledged that ET applications cannot be worn for extended
periods due to factors such as personal hygiene practices, perspiration, and clothing
changes. Consequently, it is common practice among healthcare professionals to remove
and replace the ET application every three or four days [32,36]. The results of this study
validate these procedural recommendations, demonstrating a substantial effect lasting for
three days with a single ET application, without the need for removal and replacement.

For each direction of ACROM, a significant average improvement of 15% was observed
between T0 and T2. Particularly noteworthy were the higher relative improvements
observed in two specific directions: left rotation (64.8 ± 7.7◦ and 76.0 ± 11.1◦ at T0 and
T2, respectively, p < 0.001) and extension (47.0 ± 12.9◦ and 55.1 ± 12.3◦ at T0 and T2,
respectively, p < 0.001). These directions demonstrated a remarkable 17% increase in
ACROM following three days of ET application. Furthermore, self-perceived pain exhibited
a substantial average decrease of−81% between T0 and T2 (7.5± 1.0 and 1.4± 1.5, p < 0.001,
respectively). It is relevant to highlight that the current results are gender independent,
as both male and female participants showed significant improvements in ACROM and
significant reductions in self-perceived pain. This aspect is highly relevant to public health
because the absence of a gender effect enables professionals to apply the proposed method
to a broad and diverse range of individuals without any gender-based restrictions.

One crucial aspect that deserves discussion in this paper is the different approach
to the application of ET employed in this study compared to those of previous studies.
While previous studies applied tension to the ET [30,31], with one exception that used a
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similar application method but a different placement and shape [32], in this study, the ET
was applied without tension while stretching the skin during application (by inclining the
head on the opposite side). This technique allowed the formation of skin convolutions
when the head and neck were in a neutral position. It is very important to note that the
two methods of application (with tension and without tension) differ significantly in terms
of the pressure exerted on the skin. Although skin convolutions are thought to enhance
local blood flow, the available data do not strongly support this claim [41–43]. While there
are various studies of lower back pain that indicate no significant effects or differences
between elastic taping applications with or without convolutions [44,45], there is a lack of
similar data for the cervical area, except for the research conducted by Ay et al. [32]. They
demonstrated that both convoluted and non-convoluted ET applications are effective in
reducing neck pain and improving ACROM. Thus, the present study can be considered one
of the first to use a bilateral and symmetrical ET application on the cervical area for three
consecutive days, assessing its effects on self-perceived pain and ACROM. It is intriguing to
hypothesize how two vastly different methods of ET (with and without tension) can yield
similar results in terms of pain relief and cervical motion. A plausible explanation can be
found in the existing literature, which suggests that the actual effect of ET can be attributed
to both the direct contact itself and the pressure gradient generated between the taping
and the surrounding skin area [46]. This idea is based on the findings of Pamuk et al. [47],
who discuss the effects of ET on the underlying tissues, both at the immediate application
site and in more distant regions. However, it should be noted that the latter explanation
remains a hypothesis, and further research is required to elucidate this phenomenon. At
present, the literature on ET continues to grapple with certain stigmas resulting from past
inaccurate advertising that attributed false effects to taping. Therefore, studies like the
present one are crucial for elucidating and enhancing the level of evidence regarding the
use of ET for the treatment of musculoskeletal disorders.

Limitations

Like any scientific study, even this study has certain limitations that need to be ac-
knowledged. One notable limitation is the inability to conduct additional test sessions
following a three-day washout period of ET. Consequently, the findings of this paper are
specific to the immediate and short-term effects of ET, and information regarding the
residual effects after the removal is currently unavailable. This aspect is crucial because
individuals with musculoskeletal disorders are often concerned about the duration of
treatment’s positive effects over time. Health professionals may find it valuable to com-
prehend the post-removal effects of ET and the duration of its benefits, enabling more
precise intervention timing. Future research should aim to replicate our study protocol
while incorporating a fourth and fifth test session to assess changes in self-perceived pain
and multiplanar ACROM after ET removal. Since the restoration of muscle function is
considered essential in the treatment of cervical spine disorders [15], it would be highly
important to further investigate whether ET application can be regarded as beneficial for
muscle function restoration.

The use of only one inertial sensor to detect cervical spine motion should be men-
tioned as a limitation. Although the inertial sensor showed results consistent with the
3D optoelectronic system and can be considered a valid tool for measuring cervical spine
motion (see Appendix A), its use can introduce errors if the operator does not pay proper
attention during the test. In fact, during this study, to reduce the margin of error, the
shoulder position was fixed to avoid any compensatory motions. The authors strongly
advise professionals to pay close attention to this aspect.

Another limitation of this study is the absence of a placebo group. Although previous
results suggest the absence of a placebo effect for the cervical area [31,32] it would be inter-
esting for future study designs to consider this critical aspect. For example, randomizing or
having a crossover design would elicit some of this potential improvement.
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In the end, although the current results can be considered gender independent be-
cause both male and female participants showed significant modifications induced via ET
application, it is worth noting that the groups in this research are not gender-balanced.
Specifically, the male-to-female ratio in this study and the control groups is 2.4 and 1.2,
respectively. This imbalance is due to the participants lost during the preparation stage, as
shown in Figure 1. It is possible that this aspect did not affect the results in any manner;
however, it is fair to acknowledge its potential impacts. It would be interesting to replicate
the experimental procedure with groups that have more balanced gender distributions.

5. Conclusions

In summary, the results of this study emphasize the effectiveness of wearing bilateral
and symmetrical ET cervical applications for three days. To use ET is recommended for
enhancing multiplanar ACROM and reducing self-reported cervical pain when needed,
both in male and female subjects, especially among computer workers. This represents
the primary novelty of this study. Specifically, applying ET without tension to create
skin convolutions is a safe and cost-effective procedure for managing neck pain and
improving the multiplanar motion of the cervical spine. These results can have immediate
practical applications in the management of individuals’ musculoskeletal health, especially
among computer workers. Ultimately, a three-day ET application can be recommended for
managing neck motion restrictions and pain in adult individuals. Nevertheless, further
research is required to extend the application of these findings to other domains, such
as sports.
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Appendix A

Appendix A contains the data referred to in the test session conducted to validate the
Moover® inertial sensor in comparison to the 3D kinematics system. Table A1 presents
a summary of the data obtained from the convenience sample. Table A2 provides the
statistical analysis, while Figures A1–A6 depict the Bland–Altman graphs for each tested
direction. These findings contribute to the assessment of the accuracy and validity of the
inertial sensor in measuring multiplanar ACROM.

Table A1. Anthropometric of the sample (11M; 8 F).

Variables Mean (SD)

Age (years) 36.4 (7.3)
Body Height (cm) 172.5 (7.8)
Body Mass (kg) 73.3 (19.3)
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Table A2. Statistical comparison of the ACROM inertial sensor angular measures with 3D kinematics.

Parameter Inertial Sensor
Mean (SD)

3D Kinematics
Mean (SD) Z Score p Value

Right rotation (◦) 72.1 (11.7) 74.5 (11.6) −0.818 0.414
Left rotation (◦) 75.9 (8.5) 76.8 (9.2) −0.336 0.737

Right lateral inclination (◦) 44.0 (7.9) 46.2 (10.0) −0.744 0.457
Left lateral inclination (◦) 44.9 (7.2) 45.0 (6.4) −0.248 0.804

Extension (◦) 59.0 (10.0) 59.5 (10.9) −0.044 0.965
Flexion (◦) 63.2 (12.0) 63.6 (11.9) −0.248 0.804

Due to the sample numerosity a Mann–Whitney test was used to compare the data
collected via the two measurement systems. No significant differences were measured in
ACROM between the two measuring systems in any tested direction.
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